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Tab 1: Quantitative evaluation results of motion refinement on 3DPW.

Tab 2: Motion estimation on PROX dataset.

Figure: Qualitative comparisons. The mesh and body parts are the observation inputs and we show the output or optimization results. For in-the-wild fitting, we conduct experiments on both in-door datasets (bottom row) 
and online videos (upper row). For motion generation, we show samples generated from  the common standing pose.

Learning NRMF

Evaluation

NRMF is a general-purpose, expressive and robust unconditional motion prior. It models the space of plausible 
poses (𝜽), transitions ( ሶ𝜽) and accelerations ( ሷ𝜽) on the zero-level set of a geometric neural distance field. Poses 
are depicted along side their transitions and accelerations, which are visualized as blue dots onto the per-joint 
distributions of learned transitions and as blue rings around the magnitude distribution of all accelerations.

[1] D. Rempe, et al., HuMoR: 3DHuman Motion Model for Robust Pose Estimation. ICCV 2021.

[2] S. Zhang, et al., Rohm: Robust human motion reconstruction via diffusion. CVPR 2024.

[3] Y. He et al., Nrdf: Neural Riemannian distance fields for learning articulated pose priors. CVPR 2024.

[4] Z. Cai et al., SMPLer-X: Scaling up expressive human poseand shape estimation. NeurIPS 2023.

[5] C. He et al., Nemf: Neural motion fields for kinematic animation. NeurIPS 2022.

[6] G. Pavlakos et al., Expressive body capture: 3d hands, face, and body from a single image. CVPR 2019

[7] G. Tiwari et al., PoseNDF: Modeling human pose manifolds with neural distance fields. ECCV 2022

References

Analysis

Tab 3: Quantitative evaluation of motion generation.

Tab 4: Motion denoising on AMASS dataset. Figure: The effect of different noise level

Figure: Comparison on motion in-betweening.

Angular acceleration:

Angular velocity:

DistributionOptimization

NRMF = Neural Riemannian Motion Fields

𝐗 = 𝑡𝑟 , 𝜃, ሶ𝜃, ሷ𝜃 ∈ ℝ3 × ℳ
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𝑤ℎ𝑒𝑟𝑒 𝛀𝐭
𝟐 + ሶ𝛀𝐭 is also skew-symmetric 

Ω 𝑡 = 𝑅⊤ 𝑡 ሶ𝑅 𝑡 ∈ 𝔰𝔬(3) where 𝝎 𝑥 = Ω, 𝝎 ∈ ℝ3

Learning
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ሶ𝜔 ሷ𝜃𝑖


	幻灯片 5

