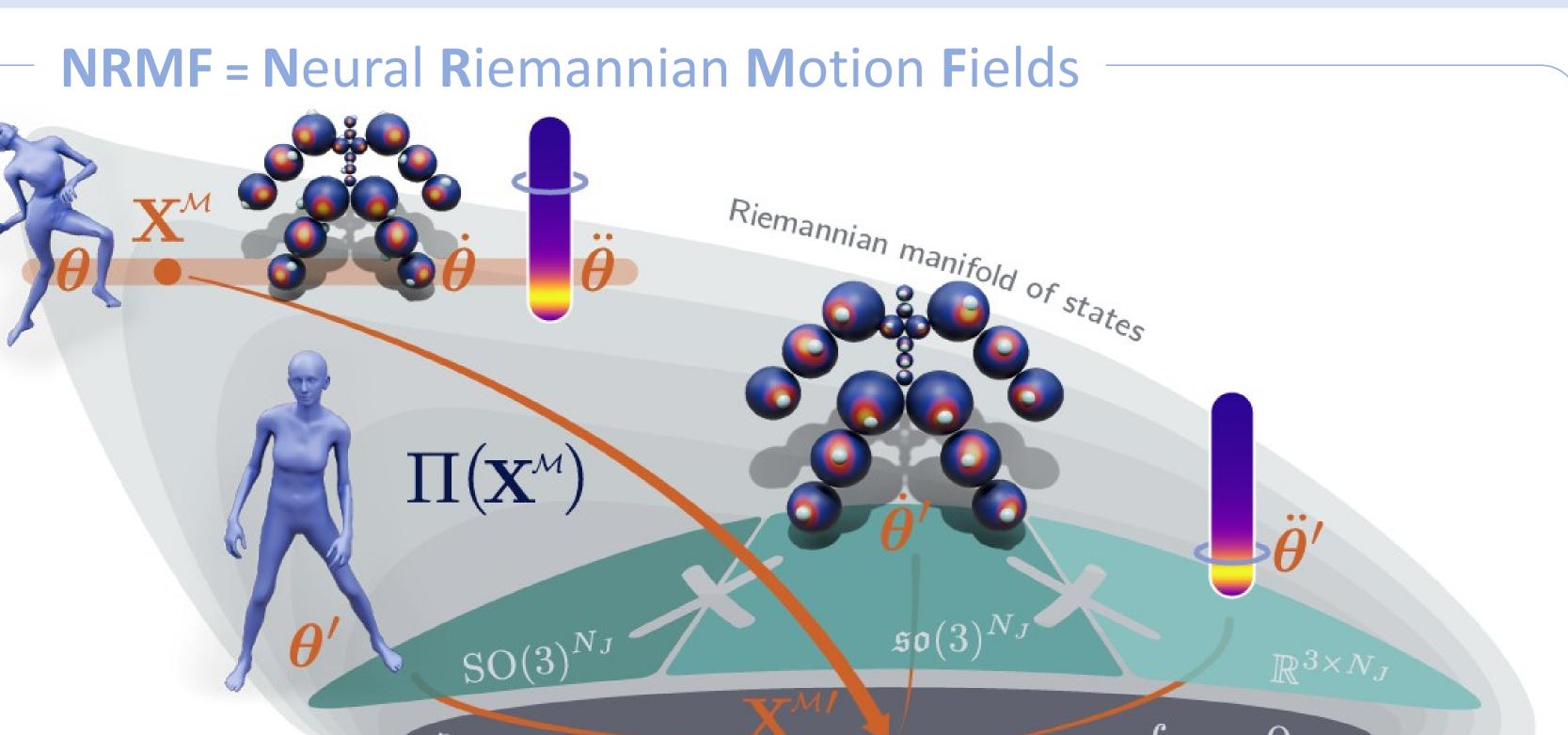
## IMPERIAL

## Geometric Neural Distance Fields for Learning Human Motion Priors

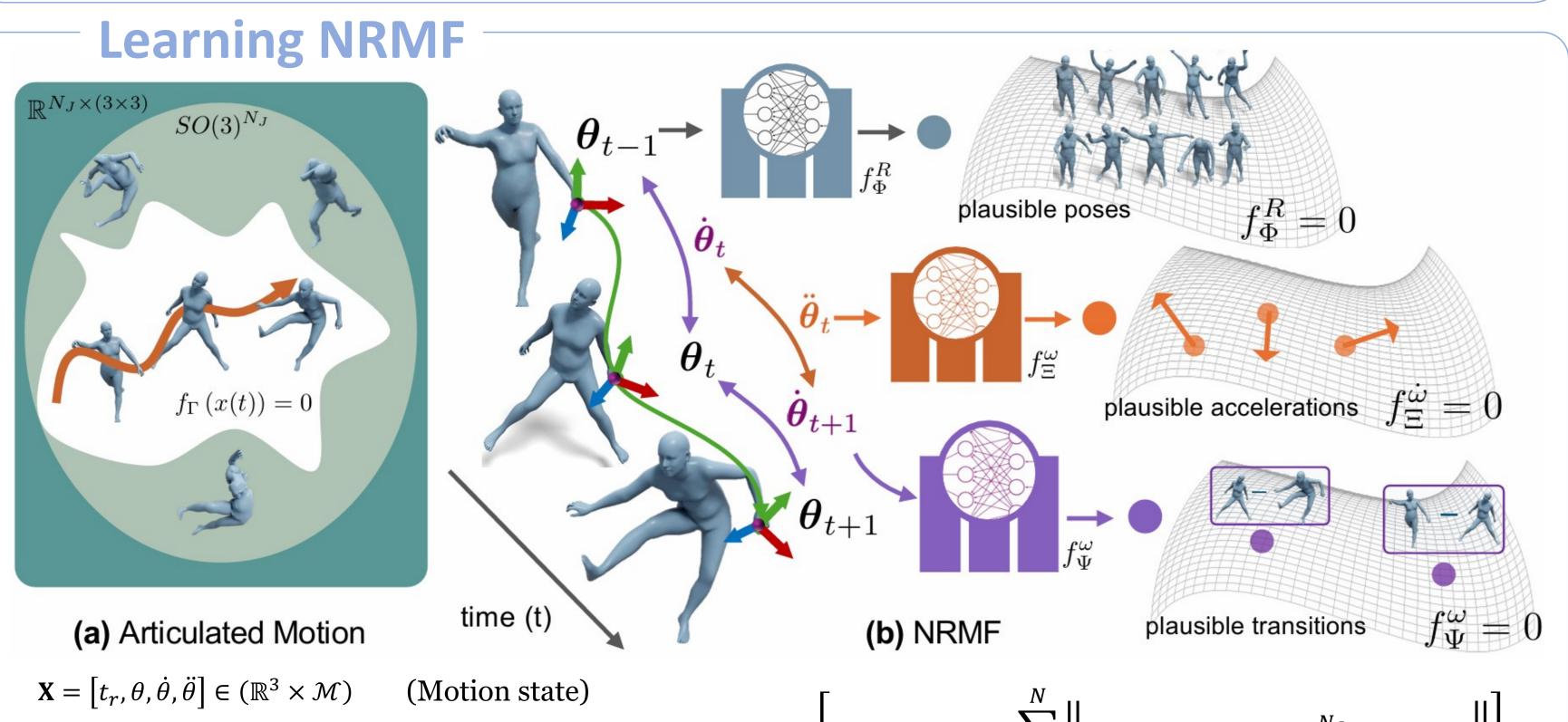
Meta

Zhengdi Yu<sup>1</sup> Simone Foti<sup>1</sup> Linguang Zhang<sup>2</sup> Amy Zhao<sup>2</sup> Cem Keskin<sup>2</sup> Stefanos Zafeiriou<sup>1</sup> Tolga Birdal<sup>1</sup> <sup>1</sup>Imperial College London <sup>2</sup>Meta Reality Labs





NRMF is a general-purpose, expressive and robust unconditional motion prior. It models the space of plausible **poses**  $(\theta)$ , transitions  $(\dot{\theta})$  and accelerations  $(\dot{\theta})$  on the zero-level set of a **geometric neural distance field**. Poses are depicted along side their transitions and accelerations, which are visualized as blue dots onto the per-joint distributions of learned transitions and as blue rings around the magnitude distribution of all accelerations.



 $f_{\Gamma}^* \rightarrow Neural Riemannian Motion Field$ 

(transition field) (RMF)

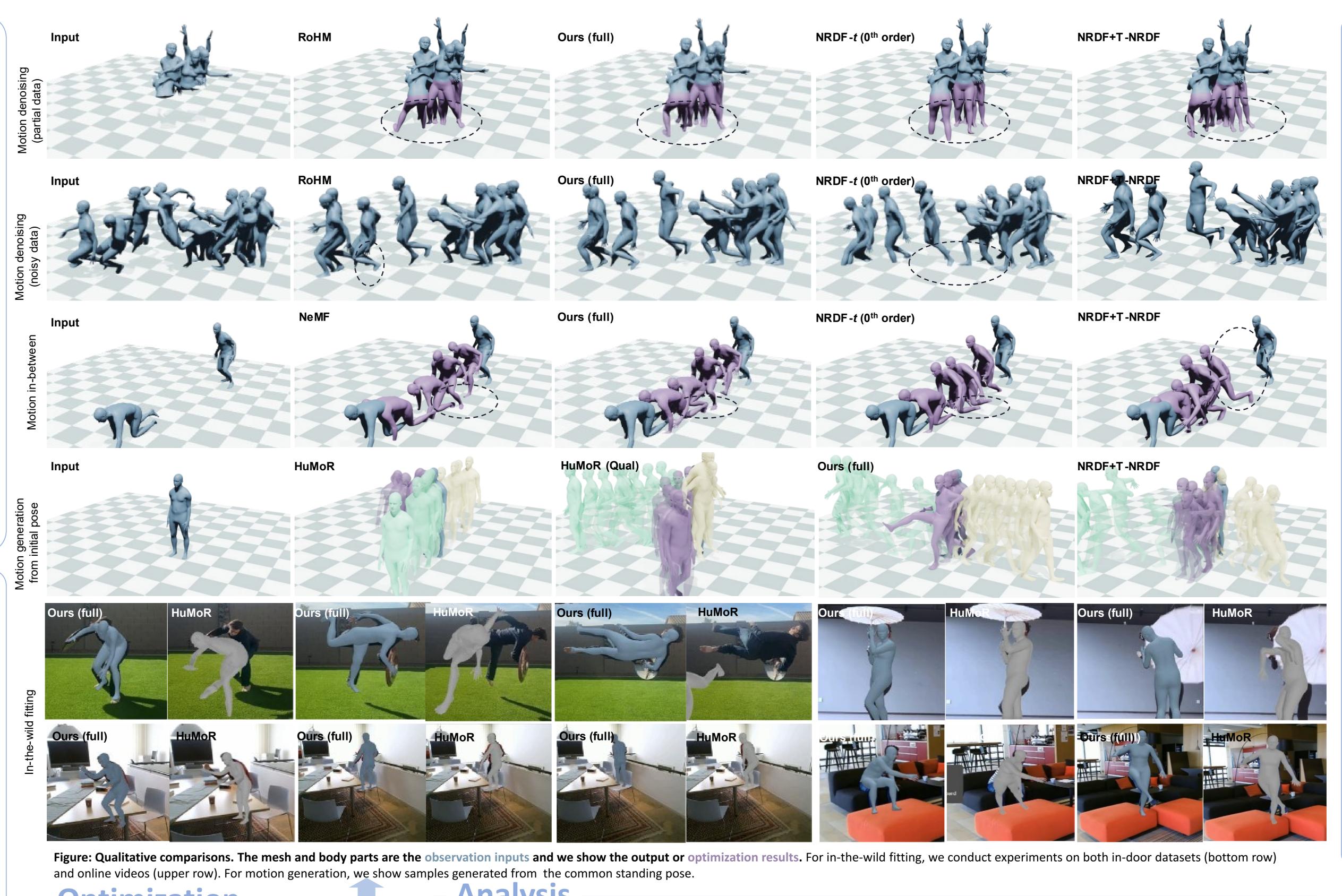
(acceleration field)

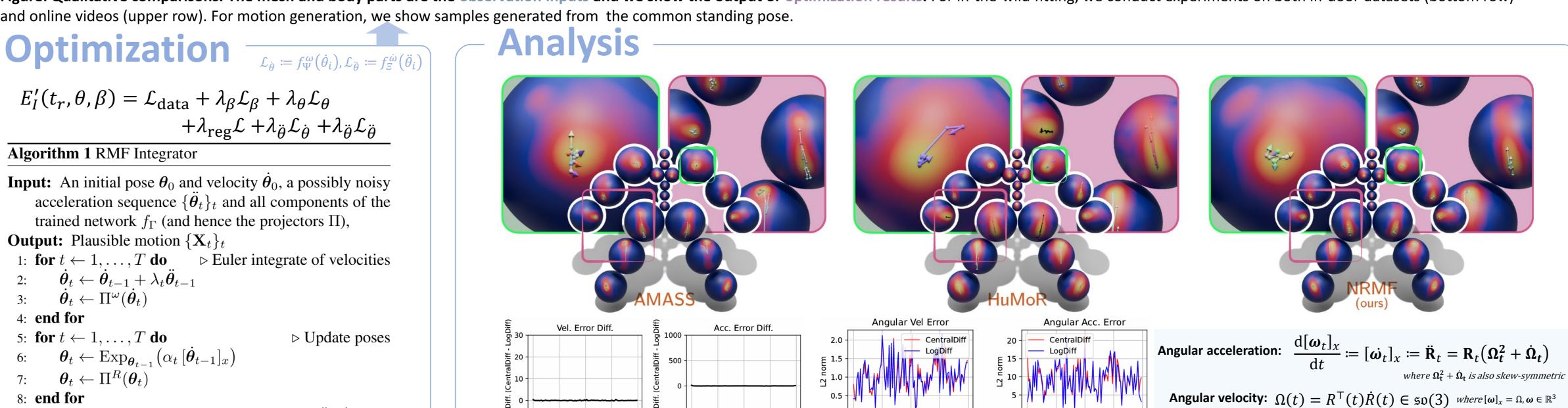
 $\alpha$ : learning rate,  $\omega$ : angular velocity,  $t_r$ : root translation,  $\mathcal{D}$ : dataset

 $\theta_{t+1} \coloneqq \Pi^R(\theta_t) = \operatorname{Exp}_{\theta_t} \left( -\alpha_{\theta} f_{\Phi}^R(\theta_t) \frac{\operatorname{grad} f_{\Phi}^R(\theta_t)}{\|\operatorname{grad} f_{\Phi}^R(\theta_t)\|} \right)$ 

 $\dot{\theta}_{t+1} \coloneqq \Pi_{t}^{\omega} (\dot{\theta}_{t}) = \dot{\theta}_{t} - \alpha_{\dot{\theta}} f_{\Psi}^{\omega} (\dot{\theta}_{t}) \frac{\nabla f_{\Psi}^{\omega} (\dot{\theta}_{t} \mid \theta_{t})}{\left\| \nabla f_{\Psi}^{\omega} (\dot{\theta}_{t} \mid \theta_{t}) \right\|}$ 

 $\ddot{\theta}_{t+1} \coloneqq \Pi_{t}^{\dot{\omega}} \big( \ddot{\theta}_{t} \big) = \ddot{\theta}_{t} - \alpha_{\dot{\omega}} f_{\Xi}^{\dot{\omega}} (\ddot{\theta}_{t}) \frac{\nabla f_{\Xi}^{\dot{\omega}} \big( \ddot{\theta}_{t} \mid \theta_{t}, \, \dot{\theta}_{t} \big)}{\left\| \nabla f_{\Xi}^{\dot{\omega}} \big( \ddot{\theta}_{t} \mid \theta_{t}, \, \dot{\theta}_{t} \big) \right\|}$ 





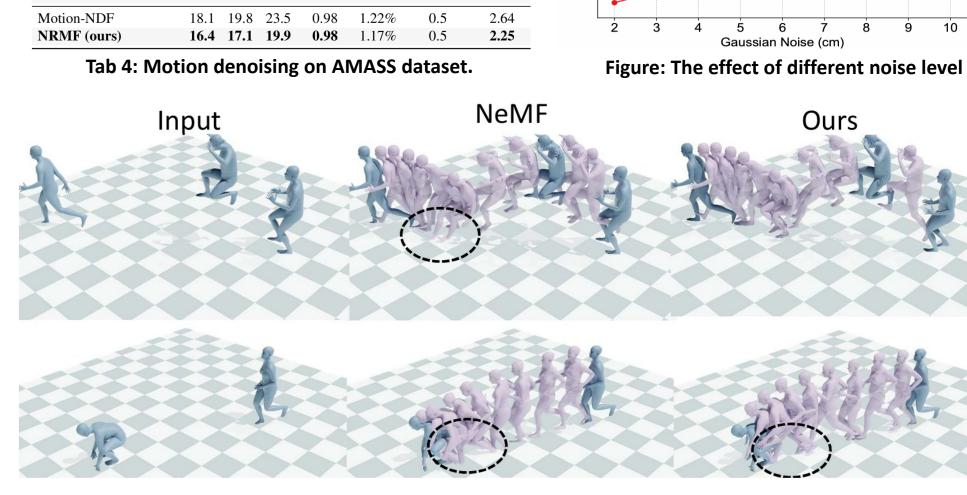
0.0 2.5 5.0 7.5 10.0

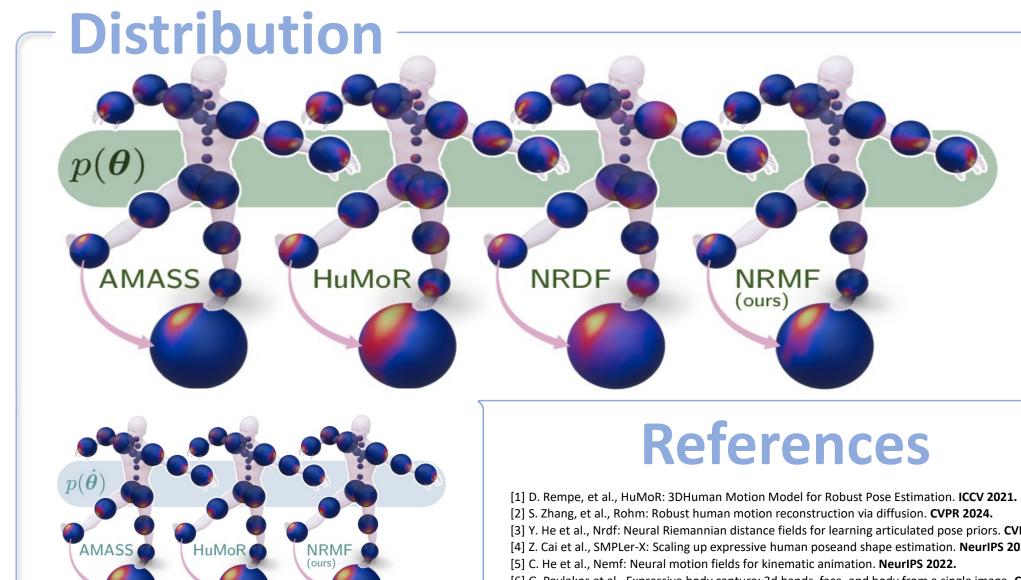
0.0 2.5 5.0 7.5 10.0

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

9: Compose  $\{\mathbf{X}_t\}_t$  from individual estimates  $\{\ddot{\boldsymbol{\theta}}_t, \dot{\boldsymbol{\theta}}_t, \boldsymbol{\theta}_t\}_t$ 

## + RoHM [42]





[3] Y. He et al., Nrdf: Neural Riemannian distance fields for learning articulated pose priors. CVPR 2024. [4] Z. Cai et al., SMPLer-X: Scaling up expressive human poseand shape estimation. NeurIPS 2023. [6] G. Pavlakos et al., Expressive body capture: 3d hands, face, and body from a single image. CVPR 2019 [7] G. Tiwari et al., PoseNDF: Modeling human pose manifolds with neural distance fields. **ECCV 2022**